Jumat, 16 September 2011

batu gamping sebagai reservoir hidrokarbon

Yang jelas nih copy paste tugas kuliah.
Dewasa ini kebutuhan dunia akan minyak bumi dan gas semakin meningkat. seiring dengan meningkatnya kebutuhan itu, para ilmuan dan para peneliti juga terus mencoba mengembangkan ilmu pengetahuan guna mendapatkan hasil produksi yang lebih banyak. Dalam hal ini batuan karbonat mulai menjadi perhatian khusus sebagai reservoir hidrokarbon. Lain halnya dengan batu pasir, reservoir batugamping lebih sulit dan lebih kompleks sifatnya. Hal ini disebabkan karena adanya berbagai macam porositas, juga struktur yang sangat mempengaruhi porositas tersebut. Porositas pada batugamping pada umumnya dikontrol oleh pelarutan matriks dan semen, semisalnya pelarutan butiran yang mengandung aragonit seperti koral dan moluska.


I. Pendahuluan
Batuan karbonat merupakan batuan reservoir bagi minyak dan gas bumi yang belakangan ini menjadi perhatian di industri migas. Di Indonesia sendiri, telah ditemukan juga cadangan minyak di batuan karbonat pada Formasi Baturaja, Formasi Kujung, dan lapangan minyak besar di Formasi Kais di Papua. Batuan karbonat adalah semua batuan yang terdiri dari garam karbonat. Dalam prakteknya adalah terutama gamping (limestone) dan dolomit.
Sedimen karbonat dihasilkan dari proses organik biokimia pada llingkungan laut bersih, hangat, shallow water. Daerah tropikal dan subtropikal dapat mencerminkan kondisi tersebut. Keadaan tertentu dapat ditunjukan sebagai faktor sedimen karbonat, misalkan karena adanya produksi sedimen yang tinggi dan akumulasi kalsium karbonat dari cangkang organisme. Faktor-faktor yang mempengaruhi sedimen karbonat adalah :
1. Garis lintang dan iklim
Karbonat yang terbentuk pada air hangat neritik (0 – 200 m) terakumulasi pada garis lintang 30­0 utara dan selatan equator. Biasanya terbentuk dari pecahan organisme seperti koral, dengan pertumbuhan terbaik pada kedalaman kurang dari 30 m. Sedimen planktonik terbentuk pada kedalaman yang lebih dalam dengan garis lintang 400 utara dan selatan. Endapan pada air dingin neritik terletak pada garis lintang 200 – 400 , terbentuk dari bryozoa, moluska dan foraminifera. Iklim dapat mengontrol rata-rata evaporasi atau hujan, mempengaruhi komposisi air laut dekat batas kontinental dan restricted basin.
2. Penetrasi cahaya
Penetrasi cahaya berkurang seiring dengan bertambahnya kedalaman air, tingginya garis lintang dan berkurangnya kejernihan air. Karbonat tumbuh pada zona shallow neritik , diatas 10 – 20 m dari permukaan laut. Batas terendah penetrasi cahaya berkisar antara 100 – 150 m yang merupakan batas zona euphotic, zona dimana fotosintetik organisme terjadi.
3. Salinitas
Keanekaragaman dan kelimpahan organisme laut terdapat pada salinitas normal marine yaitu 30 – 40 ppt (normal air laut sekitar 32 – 36 ppt).
II. Jenis-Jenis Batuan Karbonat
Pada umumnya batuan karbonat dapat dibagi menjadi empat macam, yaitu:
1. Batuan karbonat yang bersifat kerangka atau sebagai suatu terumbu (reef)
2. Batuan karbonat yang bersifat klastik
3. Batuan karbonat yang bersifat afanitik atau batugamping halus
4. Batuan karbonat yang bersifat dolomit dan kristalin
Dari keempat batuan karbonat tersebut, semuanya dapat bertindak sebagai batuan reservoir. Batugamping sebagai reservoir akan dibahas lebih lanjut.
a. Batuan karbonat yang bersifat kerangka atau sebagai suatu terumbu (reef)
Tipe batuan ini paling banyak didapatkan dalam batuan karbonat Tersier di Indonesia. Tipe ini sering membentuk tebing terjal pada singkapan, masif tak berlapis atau perlapisan buruk yang hanya kelihatan dari jauh.
Tipe gamping terumbu ini sering disebut “Boundstone” oleh Dunham, sedangkan berdasarkan terdapatnya lumpur karbonat diantara kerangka atau pecahan-pecahan kerangka Embrie dan Klovan membuat klasifikasi : Framestone, Bindstone, Bafflestone, Rudstone dan Floatstone.
Terdapat beberapa klasifikasi batugamping yang dapat digunakan, tetapi dalam industri minyak, klasifikasi Dunham (1962) yang dimodifikasi oleh Embry dan Klovan merupakan klasifikasi yang biasa digunakan. Klasifikasi Dunham didasarkan pada tekstur pengendapan awal. Faktor utama dalam dalam klasifikasi ini yang perlu diamati adalah :
Jika tekstur pengendapannya tidak dapat dikenali, maka klasifikasi Dunham tidak dapat digunakan, batuan harus dideskripsi berdasarkan ciri fisik atau diagenesis
Jika tekstur pengendapannya dapat dikenali, maka klasifikasi Dunham dapat digunakan dengan pembagian sebagai berikut :
- butiran kurang dari 10% dari seluruh batuan maka disebut mudstone. Mudstone terdapat dalam lingkungan carbonate platform dan cekungan. Calcareous mudstone berasal dari hancurnya calcareous alga hijau, pemisahan partikel-partikel skelatal besar, dan kemungkinan penyerapan inorganik dari air laut. Mudstone pada lingkungan cekungan dan slope berasal dari winnowed platform muds (periplatform ooze) atau berasal dari cangkang-cangkang nannoplankton coccoliths (nannofosil ooze). Mudstone berakumulasi pada lingkungan energi rendah.
- butiran lebih dari 10% dengan tetap didominasi oleh lumpur disebut wackestone, sedangkan bila butiran tidak didukung lumpur tetapi dengan matriks disebut packstone. Wackestone dan packstone diendapkan pada lingkungan energi transisi dimana arus tidak dapat memindahkan seluruh lumpur dari area tersebut dan tidak dapat memisahkannya dari butiran pasir. Area tersebut juga merupakan lingkungan energi rendah seperti pada mudstone hanya saja lebih dekat pada tempat dimana butiran-butiran pasir diendapkan, atau persentasi butiran-butiran pasir lebih tinggi diproduksi pada tempat pengendapan tersebut.
- Batuan seluruhnya berupa butiran disebut grainstone. Grainstone terbentuk dari butiran skeletal dan non skeletal; bioclast, ooids dan peloids. Umumnya terbentuk pada lingkungan energi tinggi seperti beaches, shoals atau nearby reefs.
- Jika butiran diikat pada waktu pengendapan oleh binding, baffling dan aktivitas framebuilding pada terumbu-pembangunan organisme disebut boundstone.
- Floatstone dan rudstone, ditambahkan pada klasifikasi Dunham untuk menggambarkan terumbu yang kasar-diperoleh dari endapan skeletal. Muddy floatstone adalah butiran skeletal dalam matriks lumpur; sandy floatstone mengandung matriks calcareous sand. Rudstone mungkin bersih, tanpa matriks, atau dengan pasir atau matrik lumpur antara tekstur yang didukung butiran.
- Framestone dan bafflestone terbentuk oleh pembangun terumbu skleletal robulus, seperti corals, stone red algae, bryozoa. Bindstone biasa sebagai komponen pada reef flat. Stromatolite alga merupakan bentuk tipe dari tekstur bindstone.
Batugamping terumbu adalah jenis sedimen biologi, yang merupakan suatu susunan dari rangka-rangka organisma yang terdiri atas Algae, Koral, Moluska dan Foraminifera.
Ditinjau dari segi ekologinya, organisma pembentuk terumbu dapat berkembang dengan baik dan mempunyai penyebaran pada daerah neritik yang dangkal dengan kedalaman maksimum 60m. Selain itu organisma pembangun terumbu memerlukan pula syarat untuk kelancaran hidupnya, yaitu sebagai berikut :
1. Sirkulasi air yang baik, berguna untuk membawa makanan dan pergantian oksigen.
2. Air laut yang bersih dan tidak dikotori sedimen, karena hal ini akan memudahkan masuknya sinar matahari untuk dapat diterima oleh organisma.
3. Salinitas yang normal, berkisar antara 27-38 perseribu.
4. Temperatur air yang agak hangat, antara 20-300C.
b. Batuan karbonat yang bersifat klastik
Tipe klastik ini dapat dibagi lagi menjadi :
a. Bioklastik
b. Interklast/fragmenter
c. Chemiklastik
Gamping Tipe Bioklastik
Tipe gamping ini terdiri seluruhnya dari cangkang-cangkang atau fragmen-fragmen kerangka organisme. Biasanya dicirikan bahwa fragmen/cangkang pernah lepas, terutama jika ditransport.
Lingkungan Pengendapan
Lingkungan pengendapannya terdiri dari :
1. Sering merupakan laut yang beragitasi “shoal”, bagian-bagian dangkal dekat pantai (litoral) terutama jika bertekstur grainstone-packstone dengan partikel-partikel terabrasi.
2. Dapat pula dibagian-bagian teduh dekat suatu reef, dilagoon, difore reef; merupakan lembaran-lembaran dari reef yang dipecah-pecah gelombang kebagian air tenang, terutama jika bertektur packstone ataupun wackstone, dengan butiran yang terabrasi. Di fore reef biasanya merupakan breksi-talus runtuhan dari reef, terdiri dari pecahan-pecahan cangkang koral.
3. Sering pula neritik; misalnya jika terdiri dari organisme benthos, tanpa adanya abrasi, misalnya gamping foraminifera besar yang membentuk “bank” atau “biostrome”
Termasuk kedalam tipe bioklastik adalah gamping pelagis : terutamater diri dari globigerina dan textularia yang menghujani dasar laut dan sering membentuk kapur/chalk.
Terdapatnya gamping bioklastik; sering membentuk “biostrome” atau “bank” tetapi dapat pula sebagai “bioherm”.
Gamping Klastik Tipe Fragmenter (Bioklastik Maupun Chemical)
Jenis ini sering pula disebut “dendrital limestone” (Pettijohn, 1957, p. 401) namun istilah ini tak dianjurkan untuk dipakai. Tipe klastik fragmenter terdiri dari fragmen-fragmen yang asalnya tak jelas, dan dapat merupakan campuran. Istilah yang sering dipakai: calcarenite (<2 mm) dan calcirudite (> 2 mm) juga Grainy Limestone, Granular Limestone.
Cara terdapatnya jenis gamping ini adalah berlapis baik sering menyerupai batupasir dan dengan struktur sedimen silang siur, gelebur-gelombang dan sebagainya.
Gamping Tipe Peralihan
Peralihan ke gamping bioklastik adalah biasa, sehingga menimbulkan persoalan klasifikasi. Sebaiknya didiskripsi yang baik. Juga peralihan/pencampuran oolite/pellet sering terjadi. Klasifikasi Dunham(1961) dipergunakan dalam diagran klasifikasi ini.
Tipe lain adalah Interklast : hasil perombakan/ erosi lapisan yang baru diendapkan. Biasanya berbutir kasar, sehingga sering merupakan breksi atau konglomerat.
Lingkungan Pengendapan
Gamping jenis ini pada umumnya, terutama yang bertekstur grainstone, diendapkan secara mekanis oleh arus laut. Konsep rezim aliran berlaku pula untuk tipe batuan ini, dan semua sturktur sedimen termasuk urutan-urutan turbidit dapat diharapkan. Misalnya : dibagian luar suatu shelf (platform) dimana banyak arus.
Contoh : Bagian bayangan angin dari terumbu pulau Seribu (Umbgrovw 1929) terdiri dari klastik rombakan dari terumbu. Jika butir-butir rombakan ini banyak mengandung matrix (packstone), maka sering dibagian yang terlindung dari arus gelombang (backreef), beralih pada tipe gelombang aphanitic (wackstone).
Gamping Tipe Chemiclastic atau Klastik Non Fragmenter
Tipe gamping ini jarang didapatkan di Indonesia, tetapi batuan ini merupakan reservoir minyak yang penting. Pengendapan dapat diamati di Kepulauan Bahama dan Great Salt Lake (USA).
Tipe batuan ini sering bergradasi ke tipe bioklastik dan tipe klastik fragmenter, malah campuran dari ketiga unsur sering terdapat bersama-sama.
Lingkungan Pengendapan dan Proses Pembentukkan
Agassiz (1896), oolit adalah pengendapan eolian, sedangkan penulis-penulis lain menyatakan sebagai marine. Masalah lain adalah apakah oolit diendapkan secara fisika-kimiawi (Vaughn, 1914), colloid gelatin atau atas bantuan ganggang cyanophycea (Rothpletz, 1892 dan wethered 1895). Menurut Bradley 1929, Bucher 1918, Eardly 1938, berdasarkan pengamatan di Great Salt Lake dan Green River Formasi, oolite dibentuk dalan air yag diombang-ambing (diagitasi) secara kuat/keras, dekat garis pantai, terlihat sering berasosiasi dengan struktur lapisaan silang-siur (cross bedding).
Illings (1954) menyatakan bahwa oolit terjadi di laut dangkal yang “supersaturated” akan kalsium karbonat, dan dimana terjadi aliran-aliran marine yang cukup kuat.
Eardly (1938) menyatakan bahwa karbonat diendapkan dipermukaan air sebagai kristal kecil (< 2 micron) yang kurang larut daripada butir-butir yang lebih besar. Setidaknya jatuh didasar laut dan waktu yang sama sejumlah molekul yang sama keluar dari larutan mengendap pada butir yang lebih besar. Butir ini tumbuh secara oolitis, karena akresi dan juga “corrosion” menjadi bundar, sewaktu diombang-ambing oleh arus.
c. Batuan karbonat yang bersifat afanitik atau batugamping halus
Gamping jenis ini terdiri dari butir-butir < 0,005 mm, tidak dapat diketahui
apakah terdiri dari fragmen-fragmen halus (pecahan-pecahan gamping) atau kristal-kristal halus.
Cara Pembentukkan
Cara pembentukkannya yaitu :
1. Dari penggerusan gamping yang telah ada, pengancuran terumbu oleh gelombang (micro-granuler-clastics).
2. Dari pengendapan langsung secara kimiawi dari air laut yang telah kelewat jenuh akan CaC03, sebagai jarum-jarum aragonit.
3. Dari pengendapan dengan bantuan ganggang hijau (chlorophycea) sebagai jarum-jarum aragonit.
Lingkungan Pembentukkan
Lingkungan pembentukkannya yaitu :
1. Diendapkan didaerah dangkal yang terlindung lagoon dibelakang terumbu.
2. Penguapan yang kuat, temperatur tinggi/tropis/subtropis
3. Dengan bantuan ganggang.
Biasanya kaya akan zat organik dan diacak-acak oleh binatang, sehingga tidak memperlihatkan perlapisan.
III. Terumbu Karbonat sebagai batuan resevoir
Terumbu ( reef ) dapat menjadi batuan reservoir yang sangat penting. Pada umumnya terumbu terdiri dari suatu kerangka, coral, ganggang, dan sebagainya yang tumbuh dalam laut yang bersih, berenergi gelombang tinggi, dan mengalami banyak pembersihan sehingga rongga-rongga antaranya khususnya menjadi sangat bersih. Dalam hal ini porositas yang didapatkan terutama dalam kerangka yang berbentuk rongga-rongga bekas binatang hidup yang tersemenkan dengan sparry calcite sehingga porositasnya diperkecil.
Bentuk reservoir terumbu
Pada umumnya dapat dibedakan menjadi 2 macam reservoir terumbu, yaitu:
Terumbu yang bersifat ‘ fringing ‘ atau merupakan suatu bentuk yang memanjang di lepas pantai.
Terumbu yang bersifat terisoler di sana-sini, yang sering disebut sebagai suatu ‘ pinnacle ‘ atau ‘ patch reef ‘ atau secara tepat dikatakan sebagai bioherm, yang muncul di sana-sini sebagai bentuk kecil secara tidak teratur.
Terumbu yang berbentuk linier, atau sebagai penghalang ( barrier ) biasanya berbentuk mamanjang sering kali cukup besar serta memperlihatkan suatu asimetri dan biasanya terdapat pada pinggiran suatu cekungan.
Terumbu tiang
Lapangan yang bersifat terumbu tiang ( pinnacle ) ditemukan di Libya yaitu lapangan Idris dalam cekungan Sirte yang didapatkan dari suatu terumbu berumur paleosen.
Contoh yang baik untuk terumbu tiang sebagai reservoir ialah yang didapatkan baru-baru ini di Irian Jaya, yaitu lapangan minyak Kasim dan Jaya. Lapangan Kasim-Jaya merupakan suatu akumulasi dalam kulminasi terumbu yang tumbuh di atas suatu kompleks terumbu yang merupakan suatu landasan. Bentuk terumbu Kasim-Jaya itu terdiri daripada batuan karbonat berenergi tinggi yang panjangnya 7 km dan lebarnya 2.5-3.5 km dan mempunyai ketinggian atau relief vertikal 760 m di atas landasan tempat terumbu itu tumbuh.
Contoh lain daripada batuan reservoir ini ialah di dalam Formasi Baturaja di laut Jawa sebelah Barat yaitu lapangan minyak kitty yang menghasilkan minyaknya dari terumbu batugamping.
Gamping klastik
Gamping klastik sering juga merupakan reservoir yang sangat baik, terutama dalam asosiasinya dengan oolit, dan sering disebut sebagai kalkarenit.
Jadi jelas, bahwa batuan reservoir yang terdapat di dalam oolit itu merupakan pengendapan berenergi tinggi dan didapatkan dalam jalur sepanjang pantai dengan arus gelombang kuat. Porositas yang didapatkan biasanya ialah jenis porositas intergranular, yang kadang-kadang diperbesar oleh adanya pelarutan. Batuan reservoir oolit terdapat misalnya di cekungan Illinnois ( Amerika Serikat ), dimana terdapat oolit dalam gamping yang berumur karbonat. Lapisan oolit ini disebut McClosky sand. Batuan ini terdiri daripada oolit yang kadang-kadang bersifat dolomit. Contoh yang paling penting adalah di Saudi Arabia yaitu dari Formasi Arab berumur jura muda, terutama dari anggota D.
Dolomit
Dolomit merupakan batuan reservoir yang jauh lebih penting dari jenis batuan karbonat lainnya. Harus di ingat pula, bahwa kebanyakan dari batuan karbonat seperti oolit ataupun terumbu sedikit banyak pula telah ikut didolomitasikan. Cara terjadinya dolomit ini tidak begitu jelas, tetapi pada umumnya dolomit ini bersifat sekunder atau sedikit banyak terbentuk setelah proses sedimentasi. Salah satu teori yang menyebutkan pembentukan porositas pada dolomit yaitu porositas timbul karena dolomitisasi batuan gamping sehingga molekul kalsit diganti dengan molekul dolomit, dan karena molekul dolomit lebih kecil daripada molekul kalsit maka hasilnya akan merupakan pengecilan volume sehingga tidak timbulah rongga-rongga.dolomit biasanya mempunyai porositas yang baik berbentuk sukrosit yaitu berbentuk menyerupai gula pasir. Rupa-rupanya dolomit ini terbentuk karena pembentukan kristal dolomit yang bersifat euhedron dan tumbuh secara tidak teratur diantara kalsit.

AIR TANAH

pergerakan air dalam rongga pori batuan di bawah permukaan bumi merupakan proses geologi yang tidak mudah untuk diamati, karenanya perlu upaya untuk memahaminya. Air tanah (groundwater) merupakan bagian integral dari sistem hidrologi dan merupakan sumber daya alam yang vital.
8.1 Porositas dan Permeabilitas.
Air dapat masuk ke bawah permukaan (infiltrate) karena solid bedrocks seperti juga tanah (soil), pasir dan gravel yang lepas-lepas memiliki rongga pori. Terdapat empat tipe rongga pori (Hamblin dan Christiansen, 1995), yaitu: (1) ruang antar butiran mineral, (2) rekahan (fractures), (3) rongga pelarutan solution cavities), dan (4) vesicles.
           Pada endapan pasir dan gravel rongga pori dapat mencapai 12 – 45% dari total volume. Bila diantara butiran kemudian diisi oleh butiran yang lebih kecil dan terisi oleh semen, maka porositas (porosity) menjadi tereduksi. Semua batuan terpotong karena rekahan dan pada batuan yang padat seperti granite dapat memiliki porositas yang signifikan bila dikontrol oleh rekahan. Aktivitas pelarutan terutama di batugamping membawa material terlarut membentuk lubang-lubang (pits dan holes). Beberapa batugamping memiliki porositas yang sangat tinggi karena air dapat berpindah sepanjang rekahan dan bidang perlapisan pada batugamping. Aktivitas pelarutan membesarkan rekahan dan mengembangkannya menjadi gua (caves). Pada basalt dan batuan volkanik, vesicles terbentuk karena terperangkapnya gelembung gas yang sangat mempengaruhi dalam porositas. Umumnya vesicles terkonsentrasi pada bagian permukaan aliran lava dan membentuk zona dengan prositas tinggi. Zona ini dapat terhubungkan oleh columnar joints.
            Permeabilitas (permeability) adalah kapasitas batuan untuk meloloskan fluida sangat beragam bergantung dari viskositas fluida, tekanan hidrostatik, ukuran bukaan dan terutama adalah tingkat bukaan yang saling terhubung (porositas efektif). Jika rongga pori sangat kecil, maka batuan dapat mempunyai porositas yang tinggi tetapi permeabilitasnya rendah karena air sukar melewati bukaan yang kecil.
Batuan yang umumnya memiliki permeabilitas tinggi adalah konglomerat, batupasir, basalt dan batugamping tertentu. Permeabilitas yang tinggi pada batupasir dan konglomerat dikarenakan rongga pori yang berada diantara butiran berukuran besar dan saling terhubung. Basalt dapat permeabel karena sering terekahkan dengan ekstensif yakni columnar jointing dan karena bagian atas dari aliran lavanya adalah vesicular. Batugamping terekahkan juga menjadi permeabel. Batuan dengan permeabilitas rendah adalah shale, granite yang tidak terekahkan, quartzite dan batuan padat dan kristalin lainnya.
8.2 Permukaan air tanah (water table)
Ketika air merembes kebawah permukaan, gravitasi menariknya turun dua zona tanah dan batuan. Zona bagian atas (upper zone) adalah rongga pori didalam batuan yang hanya jenuh sebagian dan air berbentuk seperti lapisan tipis (thin film) yang melekat (clinging) pada butiran karena tarikan permukaan (surface tension). Pada zona ini rongga pori terisi sebagian oleh udara dan sebagian lain oleh air disebut sebagai zona aerasi (zone of aeration). Pada batas tertentu, semua bukaan akan terisi oleh air sehingga daerah ini disebut sebagai zona jenuh (zone of saturation). Permukaan air tanah merupakan bagian paling atas dari zona jenuh ini dan merupakan elemen penting pada sistem air tanah (gambar 8.2.).

            Kajian permukaan air tanah walaupun tidak dapat diamati secara langsung, tetapi dapat dipetakan berdasarkan data yang dikumpulkan dari sumur, mata air dan permukaan pengairan. Pergerakannya dapat diteliti menggunakan isotop radioaktif, pewarna (dyes) dan unsur penjejak lainnya.
            Terdapat hubungan antara permukaan air tanah dan permukaan topografi. Permukaan air tanah berkecenderungan mengikuti permukan topografinya. Bila permukaan topografinya datar, maka permukaan air tanah juga akan datar. Bila permukaan topografinya bergelombang, maka permukaan air tanah juga akan bergelombang. Perched water table adalah air tanah (groundwater) yang terperangkap diatas permukaan air tanah karena keberadaan lapisan impermeabel seperti serpih pada zona aerasi (gambar 8.3.).
8.3 Pergerakan air tanah
Perbedaan elevasi antar permukaan air tanah dikenal sebagai hydraulic head. Hal ini disebabkan karena air mengalir mengikuti bentuk topografi. Bila kita mengikuti perjalanan air, maka mulanya gravitasi menarik air dari zona aerasi menuju ke permukaan air tanah kemudian pergerakan turun terjadi karena gravitasi dari daerah dengan permukaan air tanah tinggi menuju daerah dengan permukaan air tanah rendah (danau, sungai, rawa-rawa). Secara mendasar, pergerakan air tanah mengarah kebawah karena terdorong untuk menuju daerah dengan tekanan yang lebih rendah (gambar 8.3.).

8.4 Penyaluran alami dan artifisial
Penyaluran alami bagi air tanah adalah melalui sungai, danau dan rawa-rawa yang merupakan jalinan utama antara reservoir air tanah dan bagian lain dari sistem hidrologi. Bila penyalurannya tidak berasal dari air tanah maka sungai-sungai akan mengalami kekeringan selama paruh waktu tertentu dalam satu tahun.
            Penyaluran artifisial merupakan hasil dari pengambilan air melalui sumur (wells) yang dapat dilakukan dengan cara menggali atau mengebor sumur hingga zona jenuh. Banyaknya sumur bor ternyata telah mampu mengubah sistem hidrologi, misalnya adalah turunnya permukaan air tanah.
8.4.1 Penyaluran Alami
Beberapa kondisi geologi telah memberikan penyaluran alami dalam bentuk rembesan (seeps) dan mata air (springs). Jika lapisan permeabel berselingan dengan lapisan impermeabel, maka air tanah dipaksa mengalir secara lateral menuju singkapan lapisan permeabel (gambar 8.4.). Kondisi demikian biasa ditemukan pada mesa dan plateau dimana batupasir permeabel berselingan dengan serpih impermeabel. Penjajaran mata air (spring line) biasanya ditandai dengan penjajaran pepohonan. Mata air lainnya didapatkan karena migrasi sepanjang columnar joint dan vesicular pada basalt; muncul sepanjang sisi sungai, misalnya Thausand Springs di Idaho yang muncul di sisi Snake River Valley; dan muncul disepanjang sesar.





            Ringkasnya, mata air terbentuk karena permukaan air tanah terpotong oleh permukaan tanah atau air tanah merembes keluar ke permukaan sepanjang rekahan dan sesar. Umumnya mata air terjadi sepanjang dinding lembah (valley walls) dikarenakan sungai telah mengerosi lembah hingga bagian bawah kedudukan permukaan air tanah regional.
8.4.2 Sumur
Bandingkanlah sumur gali dan sumur pemboran! Air mengalir dari rongga pori menuju sumur mengisi kedudukan permukaan air tanah dan selanjutnya ketika air dipompa keluar, maka permukaan air tanah mengalami penurunan (drawn down) disekitar sumur dalam bentuk kerucut (cone) sehingga sering disebut sebagai kerucut depresi (cone of depression). Jika air turun dengan cepat maka akan segera terisi kembali, kerucut depresi terus tumbuh hingga pada akhirnya sumur menjadi kering. Kerucut depresi disekitar sumur besar yang digunakan untuk kebutuhan rumah tangga dan pabrik industri dapat mencapai ratusan meter diameter. Semua sumur yang berada dalam kerucut depresi akan terpengaruh. Hal ini akan dapat memicu pertengkaran di kalangan masyarakat. Untuk itulah, simulasi model komputer berdasarkan data permeabilitas, arah pengaliran dan kedudukan air tanah seharusnya sudah dapat memperkirakan jumlah air yang keluar berdasarkan periode waktu tertentu (Gambar 8.5.).





8.4.3 Air Artesis (artesian water)
Air tanah pada lapisan permeabel yang tertekan diantara lapisan impermeabel mengalami tekanan sehingga bila dilakukan pemboran, maka air akan keluar sendiri tanpa bantuan pompa (Gambar 8.6.). Kondisi geologi yang diperlukan untuk menjadi sumur artesis adalah sebagai berikut:
1.       Sikuen batuan harus mengandung lapisan permeabel dan lapisan impermeabel. Sikuen ini biasa terjadi pada kondisi alamiah sebagai perselingan antara serpih dan batupasir. Lapisan permeabel disebut sebagai  aquifer (lapisan pembawa air).
2.       Pada daerah tinggian, batuan harus memiliki kedudukan perlapisan yang miring dan tersingkap sehingga air dapat masuk kedalam aquifer.
3.       Precipitasi yang cukup dan pengaliran permukaan harus terjadi pada daerah yang tersingkap sehingga aquifer terus terisi.

Air yang tertekan didalam aquifer dapat keluar seperti air yang keluar dari pipa dikarenakan tekanan hidrostatik mampu mendorongnya sehingga rekahan atau pipa yang memotong lapisan dapat menjadi media keluarnya air menjadi mata air artesis atau sumur yang airnya mengalir sendiri (flowing wells).
            Artesian-pressure surface adalah permukaan yang merupakan batas kemampuan air artesis untuk naik ke atas (artesian water). Permukaan ini dari daerah tangkapan (recharge area) akan miring mengikuti kelerengan. Bila kita melakukan pemboran pada aquifer tertekan maka air akan naik dengan sendirinya. Bila permukaan sumur berada diatas artesian pressure surface, maka air tidak bisa mengalir ke permukaan, namun bila permukaan berada dibawah artesian pressure surface, maka air akan mengalir sendiri ke permukaan.
8.4.4 Mata air panas (thermal springs) dan geysers
Manifestasi menakjubkan dari air tanah adalah fenomena mata air panas (thermal spring) atau geyser dimana air dan uap tersembur ke udara. Fenomena ini hasil dari pemanasan air tanah karena aktifitas magmatik aktif.
            Contoh daerah yang sangat terkenal karena fenomena ini adalah Yellowstone National Park, di Amerika Serikat. Kondisi pembentukan geyser yaitu :
1. Tubuh batuan yang panas harus dekat dengan permukaan.
2. Sistem rekahan tidak beraturan hadir dan menerus kebawah dari permukaan.
3. Pasokan air tanah yang relatif konstan dan besar harus selalu ada.
Semburan geyser terjadi ketika air tanah mengalami tekanan dalam rekahan, gua-gua atau lapisan batuan yang porous hingga mencapai titik kritis kesetimbangan tekanan-temperatur. Temperatur meningkat akan mengubah air menjadi uap. Karena itu air pada bagian bawah akan tertekan lebih kuat dari air yang berada di permukaan dan air akan panas sekali hingga uap akan tersembur ke udara. Setelah tekanan mengalami pelepasan, maka gua-gua akan terisi kembali dan preses semula akan berulang kembali (Gambar 8.7.)


8.4.5 Energi geotermal
Energi panas dari air tanah atau energi geotermal saat ini banyak dimanfaatkan sebagai salah satu sumber energi. Sebagai contoh, Islandia telah memanfaatkan energi ini dengan sukses sejak 1928. Sumur yang dibor di daerah geotermal akan mengambil air dan uap yang disalurkan menuju tangki penampung dan kemudian dialirkan ke rumah-rumah dan gedung pemerintah untuk keperluan pemanas dan air panas. Biaya yang diperlukan untuk pemanasan langsung ini sebesar 60% dari biaya bila menggunakan pemanas berenergi minyak bumi dan sekitar 75% dari harga metode pemanas listrik yang termurah. Uap dari energi geotermal juga dimanfaatkan untuk pembangkit tenaga listrik. Hanya saja masalah korosi muncul karena airnya mengandung asam dan sejumlah garam terlarut karenanya muncul biaya tinggi pada perawatan sistem pemipaan.
8.5 Erosi air tanah
Air tanahjuga bisa menyebabkan erosi yang biasanya terkait dengan proses pelarutan terutama pada batugamping. Material terlarut akan dibawa dan akan diendapkan pada tempat lain, misalkan pada rongga pori batuan. Erosi air tanah dimulai sejak perkolasi air tanah melalui rekahan, sesar dan bidang perlapisan batuan dan melarutkan batuan yang mudah larut. Rekahan yang membesar akan membentuk jarian gua-gua bawah tanah yang dapat mencapai beberapa kilometer. Bila gua-guan semakin besar maka suatu ketika akan terjadi keruntuhan atap (roof collapse) dan terbentuklah depresi yang mirip kawah yang disebut sebagai sinkhole. Aktivitas pelarutan yang berjalan terus akan membesarkan sinkhole dan menjadi lembah pelarutan yang pada akhirnya akan mengerosi seluruh batuan yang mudah larut (Gambar 8.8.).
            Topografi karst adalah bentangalam yang khas hasil dari erosi air tanah. Sistem pengalirannya unik karena di beberapa tempat ditemukan sungai, namun kemudian hilang dan masuk kedalam sinkholes menjadi disappearing stream. Air mengalir melalui jaringan gua-guan membentuk sungai bawah tanah (underground stream). Mata air seringkali dijumpai karena munculnya air tanah ke permukaan.

8.6 Pengendapan air tanah
Air tanah melarutkan material yang mudah larut kemudian mengendapkannya kembali pada rongga pori dan gua-gua didalam batuan. Proses pelarutan terjadi di zona jenuh, sedangkan pengendapan terjadi di zona aerasi setelah gua-gua dan rongga pori menjadi kering. Endapan yang terbentuk di gua secara kolektif disebut sebagai dripstone. Proses pembentukannya adalah air yang masuk ke gua (biasanya melalui rekahan di atap gua) akan perlahan-lahan menetes mengendapkan calcium carbonate kemudian membentuk bentuk yang silindris dan mengkerucut dari atap gua. Bentukan demikian dinamakan sebagai stalactite. Sedangkan yang terbentuk dari dasar gua disebut stalagmite (gambar 8.9.)

            Precipitasi mineral karena peran air tanah berjalan lambat. Dalam beberapa kasus diketahui bahwa air tanah melakukan pemindahan atom atau molekul material organik dan secara bersamaan menggantikannya dengan ion mineral lain yang dibawanya. Contohnya adalah proses kayu yang membatu (petrified wood). Endapan ini yang terkenal adalah di Petrified Forest National Park di Arizona timur. Disini terdapat akumulasi yang sangat besar dari batang kayu terbatukan yang telah tertimbun oleh endapan sungai purba. Proses pelapukan dan erosi telah menyingkapkannya ke permukaan.

8.7 Alterasi sistem air tanah
Air tanah dapat meningkatkan konsentrasi padatan terlarut didalam air permukaan. Konsentrasi kimia dan sampah buangan berpotensi mengkontaminasi reservoir air tanah. Material yang telah mengalami leached (pelarutan karena perkolasi air tanah) dari tempat pembuangan sampah (waste-disposal site) akan mengandung kontaminan kimia dan kontaminan biologi. Karakter dan besarnya polutan (leachates) bergantung pada lamanya waktu infiltrasi air yang kontak dengan endapan sampah tersebut. Pada daerah yang lembab maka air tanah biasanya dangkal dan bila terus-menerus kontak dengan sampah, maka sangat berpotensi terjadi polusi (gambar 8.10.).







            Pada daerah kepulauan atau daerah semenanjung dengan batuan porous yang bersinggungan dengan laut maka air tanah akan mengapung diatas air asin dibawahnya membentuk lensa air tanah (lens-shaped body of groundwater). Air tanah secara faktual mengambang diatas air asin dalam kondisi yang setimbang. Namun, pemompaan yang berlebihan akan membentuk depresi yang besar pada permukaan air tanah dan akan membentuk kerucut besar pada air asin (gambar 8.11.).
            Amblesan (subsidence) seringkali berkaitan dengan air tanah seperti perkembangan sinkholes di daerah topografi karst. Problem keruntuhan (collapse) berpotensi sukar untuk ditangani. Karena itu pembangunan konstuksi perlu melakukan uji pemboran agar mengetahui kondisi bawah permukaan misal keterdapatan gua-gua bawah tanah. Langkah yang dapat dilakukan bila mendapatkan gua-gua bawah tanah adalah dengan memompakan beton basah (wet concrete) kedalamnya, namum penanganan seperti ini sangat mahal.


            Problem lain adalah seperti yang terjadi di Wyoming ketika suatu dam yang dibangun pada formasi batugamping Madison untuk tujuan irigasi. Ternyata batugampingnya porous dan permeabel sehingga sumua air yang tersimpat akhirnya masuk dan menghilang kebawah permukaan. Reservoir tidak pernah terisi air dan proyek gagal total (gambar 8.12.).


            Di New Orleans, sebagian terbesar kota ini mengalami penurunan 4 meter dibawah permukaan laut. Penurunan secara luas diakibatkan oleh pemompaan air tanah. Akibatnya sungai Mississippi mengalir 5 meter diatas kota dan bila hujan tiba maka airnya dipompa kelua kota sehingga mamakan biaya yang sangat besar.
            Penurunan yang terjadi di Kota Mexico adalah bangunan dibangun diatas daerah yang dahulunya batuan danau (lake-bed). Formasi bawah permukaan terdiri dari lempung jenuh air, pasir dan debu volkanik. Sedimen menjadi memadat ketika air tanah dipompa untuk keperluan domestik dan industri. Penurunan secara luas terjadi. Gedung opera mengalami amblesan lebih dari 3 meter setengah dari lantai pertama gedung berada dibawah permukaan tanah. Struktur besar lainnya juga mengalami pemiringan (lihat gambar 8.13.).

Kamis, 15 September 2011

ALL ABOUT ROCK

Batu adalah sejenis bahan yang terdiri daripada mineral dan dikelaskan menurut komposisi mineral. Pengkelasan ini dibuat dengan berdasarkan:
a. Kandungan mineral yaitu jenis-jenis mineral yang terdapat di dalam batu ini.
b. Tekstur batu, yaitu ukuran dan bentuk hablur-hablur mineral di dalam batu;
c. Struktur batu, yaitu susunan hablur mineral di dalam batu.
d. Proses pembentukan

Terbentuknya Batuan
Pembentukan berbagai macam mineral di alam akan menghasilkan berbagai jenis batuan tertentu. Proses alamiah tersebut bisa berbeda-beda dan membentuk jenis batuan yang berbeda pula. Pembekuan magma akan membentuk berbagai jenis batuan beku. Batuan sedimen bisa terbentuk karena berbagai proses alamiah, seperti proses penghancuran atau disintegrasi batuan, pelapukan kimia, proses kimiawi dan organis serta proses penguapan/ evaporasi. Letusan gunung api sendiri dapat menghasilkan batuan piroklastik. Batuan metamorf terbentuk dari berbagai jenis batuan yang telah terbentuk lebih dahulu kemudian mengalami peningkatan temperature atau tekanan yang cukup tinggi, namun peningkatan temperature itu sendiri maksimal di bawah temperature magma.

Batuan Beku
Magma dapat mendingin dan membeku di bawah atau di atas permukaan bumi. Bila membeku di bawah permukaan bumi, terbentuklah batuan yang dinamakan batuan beku dalam atau disebut juga batuan beku intrusive (sering juga dikatakan sebagai batuan beku plutonik). Sedangkan, bila magma dapat mencapai permukaan bumi kemudian membeku, terbentuklah batuan beku luar atau batuan beku ekstrusif.

Batuan Beku Dalam
Magma yang membeku di bawah permukaan bumi, pendinginannya sangat lambat (dapat mencapai jutaan tahun), memungkinkan tumbuhnya kristal-kristal yang besar dan sempurna bentuknya, menjadi tubuh batuan beku intrusive. Tubuh batuan beku dalam mempunyai bentuk dan ukuran yang beragam, tergantung pada kondisi magma dan batuan di sekitarnya. Magma dapat menyusup pada batuan di sekitarnya atau menerobos melalui rekahan-rekahan pada batuan di sekelilingnya.

Bentuk-bentuk batuan beku yang memotong struktur batuan di sekitarnya disebut diskordan, termasuk di dalamnya adalah batholit, stok, dyke, dan jenjang volkanik.

* Batholit, merupakan tubuh batuan beku dalam yang paling besar dimensinya. Bentuknya tidak beraturan, memotong lapisan-lapisan batuan yang diterobosnya. Kebanyakan batolit merupakan kumpulan massa dari sejumlah tubuh-tubuh intrusi yang berkomposisi agak berbeda. Perbedaan ini mencerminkan bervariasinya magma pembentuk batholit. Beberapa batholit mencapai lebih dari 1000 km panjangnya dan 250 km lebarnya. Dari penelitian geofisika dan penelitian singkapan di lapangan didapatkan bahwa tebal batholit antara 20-30 km. Batholite tidak terbentuk oleh magma yang menyusup dalam rekahan, karena tidak ada rekahan yang sebesar dimensi batolit. Karena besarnya, batholit dapat mendorong batuan yang di1atasnya. Meskipun batuan yang diterobos dapat tertekan ke atas oleh magma yang bergerak ke atas secara perlahan, tentunya ada proses lain yang bekerja. Magma yang naik melepaskan fragmen-fragmen batuan yang menutupinya. Proses ini dinamakan stopping. Blok-blok hasil stopping lebih padat dibandingkna magma yang naik, sehingga mengendap. Saat mengendap fragmen-fragmen ini bereaksi dan sebagian terlarut dalam magma. Tidak semua magma terlarut dan mengendap di dasar dapur magma. Setiap frgamen batuan yang berada dalam tubuh magma yang sudah membeku dinamakan Xenolith.

* Stock, seperti batolit, bentuknya tidak beraturan dan dimensinya lebih kecil dibandingkan dengan batholit, tidak lebih dari 10 km. Stock merupakan penyerta suatu tubuh batholit atau bagian atas batholit.
* Dyke, disebut juga gang, merupakan salah satu badan intrusi yang dibandingkan dengan batholit, berdimensi kecil. Bentuknya tabular, sebagai lembaran yang kedua sisinya sejajar, memotong struktur (perlapisan) batuan yang diterobosnya.
* Jenjang Volkanik, adalah pipa gunung api di bawah kawah yang mengalirkan magma ke kepundan. Kemudaia setelah batuan yang menutupi di sekitarnya tererosi, maka batuan beku yang bentuknya kurang lebih silindris dan menonjol dari topografi disekitarnya.
Bentuk-bentuk yang sejajar dengan struktur batuan di sekitarnya disebut konkordan diantaranya adalah sill, lakolit dan lopolit.
* Sill, adalah intrusi batuan beku yang konkordan atau sejajar terhadap perlapisan batuan yang diterobosnya. Berbentuk tabular dan sisi-sisinya sejajar.
* Lakolit, sejenis dengan sill. Yang membedakan adalah bentuk bagian atasnya, batuan yang diterobosnya melengkung atau cembung ke atas, membentuk kubah landai. Sedangkan, bagian bawahnya mirip dengan Sill. Akibat proses-proses geologi, baik oleh gaya endogen, maupun gaya eksogen, batuan beku dapt tersingka di permukaan.
* Lopolit, bentuknya mirip dengan lakolit hanya saja bagian atas dan bawahnya cekung ke atas.

Batuan beku dalam selain mempunyai berbagai bentuk tubuh intrusi, juga terdapat jenis batuan berbeda, berdasarkan pada komposisi mineral pembentuknya. Batuan-batuan beku luar secara tekstur digolongkan ke dalam kelompok batuan beku fanerik.

Batuan Beku Luar
Magma yang mencapai permukaan bumi, keluar melalui rekahan atau lubang kepundan gunung api sebagai erupsi, mendingin dengan cepat dan membeku menjadi batuan ekstrusif. Keluarnya magma di permukaan bumi melalui rekahan disebut sebagai fissure eruption. Pada umumnya magma basaltis yang viskositasnya rendah dapat mengalir di sekitar rekahannya, menjadi hamparan lava basalt yang disebut plateau basalt. Erupsi yang keluar melalui lubang kepundan gunung api dinamakan erupsi sentral. Magma dapat mengalir melaui lereng, sebagai aliran lava atau ikut tersembur ke atas bersama gas-gas sebagai piroklastik. Lava terdapat dalam berbagai bentuk dan jenis tergantung apda komposisi magmanya dan tempat terbentuknya.

Apabila magma membeku di bawah permukaan air terbentuklah lava bantal (pillow lava), dinamakan demikian karena pembentukannya di bawah tekanan air.

Dalam klasifikasi batuan beku batuan beku luar terklasifikasi ke dalam kelompok batuan beku afanitik.

Klasifikasi Batuan Beku
Pengelompokan atau klasifikasi batuan beku secara sederhana didasarkan atas tekstur dan komposisi mineralnya. Keragaman tekstur batuan beku diakibatkan oleh sejarah pendinginan magma, sedangkan komposisi mineral bergantung pada kandungan unsure kimia magma induk dan lingkungan krsitalisasinya.

Tekstur Batuan Beku
Beberapa tekstur batuan beku yang umum adalah:
1. Gelas (Glassy), tidak berbutir atau tidak memiliki Kristal (amorf)
2. Afanitik (fine grained texture), bebrutir sangat halus à hanya dapat dilihat dengan mikroskop
3. Fanerik (coarse grained texture), berbutir cukup besar sehingga komponen mineral pembentuknya dapat dibedakan secara megaskopis.
4. Porfiritik, merupakan tekstur yang khusus di mana terdapat campuran antara butiran-butian kasar di dalam massa dengan butiran-butiran yang lebih halus. Butiran besar yang bentuknya relative sempurna disebut Fenokrist sedangkan butiran halus di sekitar fenokrist disebut massadasar.

Batuan Metamorf
Batuan metamorf adalah jenis batuan yang secara genetis terebntuk oleh perubahan secara fisik dari komposisi mineralnya serta perubahan tekstru dan strukturnya akibat pengaruh tekanan (P) dan temperature (T) yang cukup tinggi. Kondisi-kondisi yang harus terpenuhi dalam pembentukan batuan metamorf adalah:
· Terjadi dalam suasana padat
· Bersifat isokimia
· Terbentuknya mineral baru yang merupakan mineral khas metamorfosa
· Terbentuknya tekstur dan struktur baru.

Proses metamorfosa diakibatkan oleh dua factor utama yaitu Tekanan dan Temperatur (P dan T). Panas dari intrusi magma adalah sumber utama yang menyebabkan metamorfosa. Tekanan terjadi diakibatkan oleh beban perlapisan diatas (lithostatic pressure) atau tekanan diferensial sebagai hasil berbagai stress misalnya tektonik stress (differential stress). Fluida yang berasal dari batuan sedimen dan magma dapat mempercepat reaksi kima yang berlangsung pada saat proses metamorfosa yang dapat menyebabkan pembentukan mineral baru. Metamorfosis dapat terjadi di setiap kondisi tektonik, tetapi yang paling umum dijumpai pada daerah kovergensi lempeng.

Jenis-jenis metamorfosa adalah:
* Metamorfosa kontak à dominan pengaruh suhu
* Metamorfosa dinamik à dominan pengaruh tekanan
* Metamorfosa Regional à kedua-duanya (P dan T) berpengaruh

Fasies metamorfosis dicirikan oleh mineral atau himpunan mineral yang mencirikan sebaran T dan P tertentu. Mineral-mineral itu disebut sebagai mineral index. Beberapa contoh mineral index antara lain:
· Staurolite: intermediate à high-grade metamorphism
· Actinolite: low à intermediate metamorphism
· Kyanite: intermediate à high-grade
· Silimanite: high grade metamorphism
· Zeolite: low grade metamorphism
· Epidote: contact metamorphism

Pada prinsipnya batuan metamorfosa diklasifikasikan berdasarkan struktur. Struktur foliasi terjadi akibat orientasi dari mineral, sedangkan non-foliasi yang tidak memperlihatkan orientasi mineral. Foliasi merujuk kepada kesejajaran dan segregasi mineral-mineral pada batuan metamorf yang inequigranular.

Batuan metamorf befoliasi membentuk urutan berdasarkan besar butir dan atau berdasarkan perkembangan foliasi. Urut-urutannya adalah: slate à phyllite à schist à gneiss. Selain menunjukkan besar butir dan derajat foliasi urut-urutan ini juga menunjukkan kandungan mika yang semakin banyak dari kiri ke kanan. Salah satu ciri khas batuan metamorf yang dapat teridentifikasi adalah kenampakkan kilap mika.

Sedangkan, untuk batuan metamorf non-foliasi contohnya adalah marmer, kuarsit dan hornfels.

Sementara itu, untuk tekstur mineral pada batuan metamorfosa dapat diklasifikasikan sebagai berikut:
· Lepidoblastik : terdiri dari mineral-mineral tabular/pipih, misalnya mineral mika (muskovit, biotit)
· Nematoblastik : terdiri dari mineral-mineral prismatik, misalnya mineral plagioklas, k-felspar, piroksen
· Granoblastik : terdiri dari mineral-mineral granular (equidimensional), dengan batas-batas sutura (tidak teratur), dengan bentuk mineral anhedral, misalnya kuarsa.
· Tekstur Homeoblastik : bila terdiri dari satu tekstur saja, misalnya lepidoblastik saja.
· Tekstur Hetereoblastik : bila terdiri lebih dari satu tekstur, misalnya lepidoblastik dan granoblastik

Batuan Piroklastik
Berdasarkan kata pembentuknya:
Pyro à pijar
Klastik à fragmen

Dapat disimpulkan bahwa batuan piroklastik adalah suatu batuan yang terbentuk dari hasil langsung letusan gunung api (direct blast) yang kemudian terendapkan pada permukaan sesuai dengan keadaan permukaannya (endapan piroklastik) dan lalu mengalami litifikasi untuk menjadi batuan piroklastik.

Mekanisme pengendapan piroklast adalah sebagai berikut:
· Pyroclastic Flow Deposits

Macam :
– block & ash flows
-scoria flows
-pumice / ash flows

Distribusi / penyebaran : di lembah / depresi; struktur : perlapisan (graded bedding, paralel laminasi); tekstur : sortasi buruk, terdiri dari kristal, litik, dan gelas (pumis); bagian bawah : pyroclastic surge deposits
· Pyroclastic Fall Deposits
· Pyroclastic Surge Deposits

Partikel, gas dan air vulkanik konsentrasi rendah yang mengalir dalam mekanisme turbulensi sebagai sebuah gravity flow (runtuhan). Macam-macamnya adalah base, ground dan ash cloud. Strukturnya cross-bedding dengan sortasi yang buruk.

Berdasarkan terbentuknya, fragmen piroklast dapat dibagi menjadi:
· Juvenile pyroclasts : hasil langsung akibat letusan, membeku dipermukaan (fragmen gelas, kristal pirojenik)
· Cognate pyroclasts : fragmen batuan hasil erupsi terdahulu (dari gunungapi yang sama)
· Accidental pyroclasts : fragmen batuan berasal dari basement (komposisi berbeda)

Fragmen:
1. Gelas/ Amorf
2. Litik
3. Kristalin

Mineral-Mineral Alterasi
Alterasi = Metasomatisme

Merupakan perubahan komposisi mineralogy batuan (dalam keadaan padat) karena pengaruh Suhu dan Tekanan yang tinggi dan tidak dalam kondisi isokimia menghasilkan mineral lempung, kuarsa, oksida atau sulfida logam.

Proses alterasi merupakan peristiwa sekunder, tidak selayaknya metamorfisme yang merupakan peristiwa primer. Alterasi terjadi pada intrusi batuan beku yang mengalami pemanasan dan pada struktur tertentu yang memungkinkan masuknya air meteoric untuk dapat mengubah komposisi mineralogy batuan.

Beberapa contoh mineral alterasi antara lain:
· Kalkopirit
· Pirit
· Limonit
· Garnierit
· Epidote
· Malakit
· Khlorit
· Orphiment
· Realgar
· Galena

Batuan Sedimen

Batuan sedimen adalah batuan yang terbentuk dari pecahan atau hasil abrasi dari sedimen, batuan beku, metamorf yang tertransport dan terendapkan kemudian terlithifikasi.

Ada dua tipe sedimen yaitu: detritus dan kimiawi. Detritus terdiri dari partikel-2 padat hasil dari pelapukan mekanis. Sedimen kimiawi terdiri dari mineral sebagai hasil kristalisasi larutan dengan proses inorganik atau aktivitas organisme. Partikel sedimen diklasifikasikan menurut ukuran butir, gravel (termasuk bolder, cobble dan pebble), pasir, lanau, dan lempung. Transportasi dari sedimen menyebabkan pembundaran dengan cara abrasi dan pemilahan (sorting). Nilai kebundaran dan sorting sangat tergantung pada ukuran butir, jarak transportasi dan proses pengendapan. Proses litifikasi dari sedimen menjadi batuan sedimen terjadi melalui kompaksi dan sementasi.

Batuan sedimen dapat dibagi menjadi 3 golongan:
1. Batuan sedimen klastik à terbentuk dari fragmen batuan lain ataupun mineral
2. Batuan sedimen kimiawi à terbentuk karena penguapan, evaporasi
3. Batuan sedimen organic à terbentuk dari sisa-sisa kehidupan hewan/ tumbuhan

Klasifikasi batuan sedimen klastik adalah berdasarkan besar butirnya, oleh karenanya digunakan skala Wentworth. Sedangkan untuk klasifikasi batuan sedimen kimiawi dilakukan berdasarkan matriks maupun fragmennya dengan klasifikasi dari Dunham, Embry-Klovan.

HUKUM NEWTON I, HUKUM NEWTON II, HUKUM NEWTON III

1. hukum Newton I
Menurut Hukum Newton bahwa setiap benda akan tetap diam atau bergerak lurus beraturan kecuali ada gaya yang berkerja padanya dengan kata lain benda akan bergerak dengan kelajuan tetap kecuali jika pada benda dikerjakan gaya lain. berikut ini adalah video yang menggambarkan penerapan Hukum Newton I dalam kehidupana sehari - hari
2. Hukum Newton II
menurut Newton bahwa ” Resultan Gaya yang bekerja pada suatu benda mengakibatkan terjadinya perubahan kecepatan. perubahan kecepatan tiap satu satuan waktu yang dialami olehbenda itu berbanding lurus dengan resultan gaya yang bekerja padanya”
secara matematis dirumuskan F = m.a
3. Hukum Newton III
Hukum Newton III dikenal dengan hukum aksi reaksi. menurut Newton bahwa gaya selalu berpasangan, jika suatu benda (benda pertama) mengerjakan gaya pada benda lain (benda kedua), maka benda kedau akan mengerjakan gaya yang sama terhadap benda pertama dengan arah berlawanan dengan arah gaya benda pertama.
secara matematis dirumuskan F aksi =  - F reaksi


sifat - sifat fisik mineral pembentuk batuan

Sifat fisik mineral adalah :
1.      Betuk kristalnya
2.      goresan
3.      Kekerasan
4.      Belahan
5.      Warna
6.      Berat jenis
7.      Kilap

Mineral adalah suatu zat yang terdapat dalam alam dengan komposisi kimia yang khas dan biasanya mempunyai struktur kristal yang jelas, yang kadang-kadang dapat menjelma dalam bentuk geometris tertentu.
Istilah mineral dapat mempunyai bermacam-macam makna; sukar untuk mendefinisikan mineral dan oleh karena itu kebanyakan orang mengatakan, bahwa mineral ialah satu frase yang terdapat dalam alam. Sebagaimana kita ketahui ada mineral yang berbentuk :

  • Lempeng
  • Tiang
  • Limas
  • Kubus
Batu permata kalau ditelaah adalah merupakan campuran dari unsur-unsur mineral.
Setiap mineral yang dapat membesar tanpa gangguan akan memperkembangkan bentuk kristalnya yang khas, yaitu suatu wajah lahiriah yang dihasilkan struktur kristalen (bentuk kristal). Ada mineral dalam keadaan Amorf, yang artinya tak mempunyai bangunan dan susunan kristal sendiri (mis kaca & opal). Tiap-tiap pengkristalan akan makin bagus hasilnya jika berlangsungnya proses itu makin tenang dan lambat.

1.Kristal

Kristal adalah sebuah benda yang homogen, berbentuk sangat geometris dan atom-atomnya tersusun dalam sebuah kisi-kisi kristal,karena bangunan kisi-kisi kristal tersebut berbeda-beda maka sifatnya juga berlainan. Kristal dapat terbentuk dalam alam (mineral) atau di laboratorium. Kristal artinya mempunyai bentuk yang agak setangkup (symetris) dan yang pada banyak sisinya terbatas oleh bidang datar, sehingga memberi bangin yang tersendiri sifatnya kepada mineral yang bersangkutan.
Benda padat yang terdiri dari atom-atom yang tersusun rapi dikatakan mempunyai struktur kristalen. Dalam suasana yang baik benda kristalen dapat mempunyai batas bidang rata-rata & benda itu dinamakan kristal (HABLUR) & bidang rata itu disebut muka krsital.

Ada 32 macam gelas kristal yang dipersatukan dalam 6 sistem kristal, yaitu:
  1. REGULER, Kubus atau ISOMETRIK ketiga poros sama panjang dan berpotongan tegak lurus satu sama lain (contoh : intan, pirit, garam batu)
  2. TETRAGONAL (berbintang empat) ketiga poros tegak lurus satu sama lain, dua poros sama panjang sedangkan poros ketiga berbeda (contoh chalkopirit, rutil, zircon).
  3. HEKSAGONAL (berbintang enam) Hablur ini mempunyai empat poros, tiga poros sama panjang dan terletak dalam satu bidang, bersilangdengan sudut 120 derajat (60 derajat), tetapi poros ke-empat tegak lurus atas bidang itu dan panjangnya berbeda (contoh apalit, beryl, korundum).
  4. ORTOROMBIS (irisan wajik) ketiga poros tidak sama panjang du poros berpotongan siku-siku dan poros ketiga memotong miring bidang kedua poros tadi (berit, belerang, topaz)
  5. MONOKLIN (miring sebelah) ketiga poros tidak sama panjang, dua dari porosnya berpotongan sorong & poros ketiga tegak lurus atas kedua poros tadi (gips, muskovit, augit)
  6. TRIKLIN (miring, ketiga arah) ketiga poros tidak sama panjang dan berpotongan serong satu sama lain(albit, anortit, distin)
Bentuk kristal dibagi dalam 6 tata hablur yang didasarkan:
  • perbandingan panjang poros – poros hablur
  • besarnya sudut persilangan poros – poros hablur

2.Gores

kristal / mineral yang mempunyai kekerasan < 7 jika digosokkan pada lempengan porselin yang kasar biasanya meninggalkan ditempat penggosokan tsb suatu garis yang karakteristik dan seringkali berwarna lain dari mineral itu sendiri.
  • Pirit yang warnanya kuning emas meninggalkan garis hitam.
  • Hematit (Fe2O3) yang berkilap kelogam – logaman atau memberigaris merah darah
  • Fluisvat memberikan garis putih (mineral yang berwarna terang tetapi memberi garis putih)

3.Skala Kekerasan MOH's

Kekerasan adalah sebuah sifat fisik lain, yang dipengaruhi oleh tata letak intern dari atom. Untuk mengukur kekerasan mineral dipakai Skala Kekerasan MOHS (1773-1839).
  1. Talk, mudah digores dengan kuku ibu jari
  2. GIPS, mudah digores dengan kuku ibu jari
  3. Kalsit, mudah digores dengan pisau
  4. Fluorit, mudah digores dengan pisau
  5. Apatit, dapat dipotong dengan pisau (agak sukar)
  6. Ortoklas, dapat dicuwil tipis-tipis dengan pisau dibagian pinggir
  7. Kwarsa, dapat menggores kaca
  8. Topaz, dapat menggores kaca
  9. Korundum, dapat mengores topaz
  10. Intan, dapat menggores korundum

Bentuk Kristal Intan ialah benda padat besisi delapan (OKTAHEDRON)
  1. K = 1 : Talk/Silikat magnesia yang mengandung air
  2. K = 2 : Gips (CaSO4), batu tahu
  3. K = 3 : Kalsit (CaCo3)
  4. K = 4 : Vluispat (CaF2)
  5. K = 5 : Apatit mengandung chloor
  6. K = 6 : Veldspat, kaca tingkap
  7. K = 7 : Kwarsa, pisau dari baja
  8. K = 8 : Topas; Silikat alumunium yang mengandung borium, batu permata
  9. K = 9 : Korsum (Al2O3 dalam corak merah, batu permata delima, corak biru batu nilam/safir)
  10. K = 10 : intan batu permata
Masing-masing mineral tersebut diatas dapat menggores mineral lain yang bernomor lebih kecil dan dapat digores oleh mineral lain yang bernonor lebih besar. Dengan lain perkataan SKALA MOHS adalah Skala relative. Dari segi kekerasan mutlak skala ini masih dapat dipakai sampai yang ke 9, artinya no. 9 kira-kira 9 kali sekeras no. 1, tetapi bagi no. 10 adalah 42 kali sekeras no. 1
K.E. Kinge (1860) dalam Han Sam Kay mengelompokkan batu permata yang dijadikan perhiasan dalam lima belas kelas sebagai berikut :
  1. Batu permata Kelas I, Nilai Keras antara 8 s/d 10
  2. Batu Permata kelas II, Nilai Keras antara 7 s/d 8
  3. Batu permata Kelas III
    Batu permata kelas ini tergolong jenis batu mulia dan batu mulia tanggung, nilai kerasnya kira-kira 7, sebagian besar terdiri dari asam kersik (kiezelzuur), keculai pirus (tuquois)
  4. Batu-Batu mulia Tanggung yaitu batu kelas IV, nilai keras antara 4 – 7
  5. Batu kelas V
    Batu kelas V nilai kerasnya dan kadar berat jenisnya sangat berbeda-beda. Warnanya gelap (kusam) dan kebanyakan agak keruh, tidak tembus cahaya, batunya sedikit mengkilap, dan harganyapun amat murah bila dibandingkan dengan harga batu mulia.
    Dalam kelas ini termasuk batu marmer dan batu kelas V tidak tergolong batu mulia.

4.Belahan

Belah adalah kecenderungan batu permata untuk membelah kearah tertentu menyusur permukaan bidang rata, lebih spesifik lagi ia menunjukkan kearah mana ikatan-ikatan diantara atom relative lemah dan biasanya reta-retak menunjukan arah belah.
Belahan ialah sifat untuk menjadi belah menurut bidang yang agak sama licinnya

  • belahan baik sekali
  • baik
  • sedang
  • buruk
  • tidak ada belahan sama sekali

5.Warna

Kenapa kita dapat melihat berbagai warna ?
Warna dapat dilihat ketika terjadi beberapa proses pemindahan panjang gelombang, beberapa menyerap panjang gelombang spesifik dari spektrum yang dapat dilihat. Spektrum yang dapat dilihat terdiri dari warna merah, oranye, kuning, hijau, biru, nila dan violet.

Ketika terjadi pemindahan panjang gelombang akan mempengaruhi energi dan akan terjadi perubahan warna dan jika permata itu mengandung besi biasanya akan terlihat berwarna kelam, sedangkan yang mengandung alumunium biasanya terlihat berwarna cerah, tetapi juga ada mineral yang berwarna tetap seperti air (berkristal) dan dinamakan Idhiochromatic
Disini warna merupakan sifat pembawaan disebabkan karena ada sesuatu zat dalam permata sebagai biang warna (pigment agent) yang merupakan mineral-mineral yaitu : belerang warnanya kuning; malakit warnanya hijau; azurite warnanya biru; pirit warnanya kuning; magatit warnanya hitam; augit warnanya hijau; gutit warnanya kuning hingga coklat; hematite warnanya merah dsbnya.
Ada juga mineral yang mempunyai warna bermacam-macam dan diistilahkan allokhromatik, hal ini disebabkan kehadiran zat warna (pigmen), terkurungnya sesuatu benda (inclusion) atau kehadiran zat campuran (Impurities). Impurities adalah unsur-unsur yang antara lain terdiri dari Ti, V, Cr, Mn, Fe, Co, Ni, Cu, dan biasanya tidak hadir dalam campuran murni, unsur-unsur yang terkonsentrasi dalam batu permata rendah.
Aneka warna batu permata ini sangat mempersona manusia sehingga manusia memberi gelar “mulia” pada batu-batu itu, contoh intan yang hanya terdiri dari satu unsur mineral yakni zat arang merupakan benda yang padat yang bersisi delapan karena adanya zat campuran yang berbeda akan menyebabkan warna yang berbeda : tidak berwarna, kuning, kuning muda, agak kebiru-biruan, merah, biru agak hijau, merah jambu, merah muda, agak kuning coklat, hitam yang dinamakan carbonado, hijau daun. Banyak mineral hanya memperlihatkam warna yang terang pada bagian-bagian yang tipis sekali. Mineral yang lebih besar dan tebal selalu memberi kesan yang hitam, tanda demikian antara lain diperlihatkan oleh banyak mineral.
Warna hijau muda; jika warna tersebut makin tua berarti makin bertambah Kadar Fe didalam molekulnya.

6.Berat Jenis (BD)

Untuk mengetahui mineral yang belum diketahui Bdnya dipakai alat yang disebut cairan berat :
  • Pertama : Bromoform (ChBr)
  • Kedua : Joodmethylin (Ch2 J2)
  • Ketiga : Cclerici yaitu larutan Thallium malonat formiat
Mineral dengan BD < 2,68 mineral ringan
  • kwarsa: 2,57
  • albit: 2,62
  • oligoklas: 2,64
Mineral dengan BD > 2,68 mineral berat
  • Labradorit: 2,70
  • Anortit: 2,76
  • Augit hornblende: 3,20
  • Maskotit: 2,90
  • Biotitit: 3,00
  • Korundum: 3,20
  • Turmalin
Mineral dengan BD 3,3 – 4 mineral amat berat
  • olifin
  • starolit
  • granat / garnet
Mineral dengan BD > 4 dan kekerasan = 7
  • Zirkon
BD = 2,65 Mineral tergolong dalam fraksi enteng dan bias rangkapnya  Kuarsa kristalen; bergkristalØtergolong rendah yaitu terdiri dari   opal = sebetulnya gel asamØ(tidak berwarna); amathis atau kecubung   chalsedon; jenis kristalnya jenis kripto (kwarsa kriptoØkersik  kristalen); k = 7; struktur kristalnya baru tampak jika dilihat dengan  agat; jenis kristalnya jenis kripto (kwarsaØmenggunakan mikroskop.  kripto kristalen) = k = 7; struktur kristalnya baru tampak jika dilihat  Oniks, jenis kristalnya jenis kriptoØdengan menggunakan mikroskop  (kwarsa kripto kristalen) = k = 7; struktur kristalnya baru tampak jika  opalØ besi kersik Ø jaspis Ødilihat dengan menggunakan mikroskop  tanggung (half opal) = sifat membelah tidak ada pecahannya berupa kerang.
 Nefrit = Jade = Giok {Ca2 (Mg, Fe)5 (OH)2Si8O22}ØBD = 2,9 – 3,3  aktinolit atau Amfibol kalsium magnesium besi; bentuk menyerabut atau asbes tiform; warna kelabu, kehijau-hijauan atau kekuning-kuningan; adanya garis kembar; warna plagioklas putih, kadang – kadang kehijau-hijauan, hijau tua, coklat, hitam, kadang-kadang tembus pandang (transparan), tembus cahaya (Translucent) atau opal; bidang belah berpotongan dengan sudut 550 dan 1250 ; K = 5 – 6; apabila dipanaskan mengeluarkan air yang menunjukkan bahwa ia terbentuk dalam suasana hidro (perhatikan adanya gugusan OH) atau dikenal sebagai AMFIBOL.
 Epidot ( H2 M4 “M6”’ Si6O26, M”); dari batu-batuanØBD = 3,3 – 3,6  endapan atau sedimen yang lebih tua; k = 6,5; Hijau- hijau kekuning-kuningan, terdapat jenis yang berwarna merah; belahan baik; mengristal monoklin, prisma; bias cahaya dan bias rangkap kuat.
 Granat/Garnet (M3” M2”’ SiO3O12); dari batuanØBD = 3,5 – 5,3  sedimen tua; kristal reguler; bias cahaya keras, tidak berbias rangkap (Isotrop); K = 7; belahan baik; warna merah, merah coklat, kuning dan hijau jarang, tidak berwarna sama sekali.
 Korundum (Al2O3) tersusun sangat padat; tak berwarnaØBD = 4  –bermacam-macam warna; K = 9; Oktahedron/Hexagonal; Bias tinggi; Bias  Spinel (M” = Mg, Zr, Fe; M”’ = Cr, Al,Ørangkapnya rendah. (3,9 – 4,1)  Mn); hijau tua; K = 7,5 – 8; Biasnya tinggi, Mengkristal secara reguler; bersifat isotrop dalam optiknya; belahannya seringkali buruk
 Ortit termasuk golongan Epidot hanya dalamØBD = 4,2  persenyawaannya berbeda disebabkan kadar Ce yang tinggi; K= 5,6; merah coklat, coklat merah tua – kuning atau coklat kuning; kristal gemuk  Turmalin {H9Al3(B.OH)2Si4O19}; K= 7; Heksagonal,Øseperti prisma;  belahan buruk, Bias sedang; Pleokroisnya sangat kuat; jernis seperti air, Coklat biru sampai hitam, turmalin biru agak jarang diketemukan.
Tiap-tiap batu permata yang sudah dikenal berat jenisnya dapat diketahui nilai keras batu, dari berat batu dapatlah dihitung kari dari permata tersebut. Karat adalah satuan berat yang setimbang dengan seperlima gram. Satuan ini disebut karat metric. Jika kita timbang berat intan, tidak dikatakan berat intan 1 gram tetapi berat intan adalah 5 karat, demikian yang lain batu rubi beratnya 17,8 karat, batu sapphire 7 karat dsbnya.
7. Kilap
   Kilap adalah kenampakan atau kualitas pantulan cahaya dari permukaan suatu mineral. Kilap pada mineral ada 2 jenis, yaitu kilap logam dan kilap Non logam. Kilap non logam antara lain. Yaitu : kilap mutiara, kilap gelas, kilap sutera, kilap resin, dan kilap tanah.




Penggolongan mineral

Mineral pembentuk batuan dikelompokkan menjadi empat yaitu :
1.      silikat
2.      oksida
3.      sulfide
4.      Karbonat dan Sulfat

1. Mineral silikat
     Hampir 90% mineral pembentuk batuan adalah mineral silikat yang merupakan senyawa antar silicon dan oksigen dengan beberapa unsure metal. Silikat merupakan bagian utama yang membentuk batuan baik sediment, batuan beku maupun batuan malihan. Silikat pembentuk batuan yang umum dibagi menjadi dua kelompok, yaitu kelompok ferromagnesium dan non feromagnesium.

2. Mineral Ferromagtnesium

    Olivine : berwarna olice. Berat jenis antara 3.27-3.37, tumbuh sebagai mineral yang mempunyai bidang belah yang kurang sempurna.

    Augitit : warnanya sangat gelap hijau hingga hitam. Berat jenis antara 3.2-3.4 dengan bidang belah yang berpotongan hamper tegak lurus. Bidang belah ini sangat penting untuk membedakannya dengan mineral hornblende.
    
    Hornblende : warnanya hijau hingga hitam; berta jenis 3.2 danb mempunyai bidang belah yang berpotongan dengan sudut kira-kira 56 dan 124 derajat yang sangat membantu dalam cara mengenalnya.
     Biotite : mineral “mika” bentuknya pipih yang dengan mudah dapat dikelupas. Dalam keadaan tebal,warnanya hijau tua hingga coklat-hitam;BD 2,8-3,2.


3. Moneral non-feromagnesium

     Muskovit : Disebut mika putih Karena warnanya yang terang, kuning muyda, coklat, hijau atau merah. BD antara 2,8-3,1

     Felspar: Merupakan mineral pembentuk batuan yang paling banyak. Jumlahnya di dalam kerak bumi hamper 54%

     Orthoklas: mempunyai warna yang khas yakni putih abu-abu atau merah jambu. BD 2,57.
     
      Kuarsa: adalah satu-satunya mineral pembentuk batuan yang terdiri dari silicon dan oksigen. Umumnya muncul dengan warna seperti asap, kadang-kadang juga dengan warna ungu atau merah lembayung(violet). Warna yang bermacam-macam ini karena adanya unsure-unsur lain yang tidak bersih.

4. Mineral oksida
       Terbentuk karena persenyawaan langsung antara oksigen dan unsure tertentu. Susunannya lebih sederhana disbanding silikat. Mineral oksida umumnya lebih keras dibanding mineral lainnya kecuali silikat. Lebih berat kecuali sulfide. Unsur yang paling utama dalam oksida adalah besi,Chroom,mangan,timah dan alumunium.

5.Mineral Sulfida
       Merupakan mineral hasil persenyawaan langsung antara unsure tertentu dengan sulfur (belerang), seperti besi, perak, timbale, seng dan merkuri.

6. Mineral-mineral Karbonat dan sulfat
       Mineral ini merupakan susunan utama yang membentuk batuan sediment.